Linear Search
&
Binary Search

What Is algorithm and Algorithm
design?

® An Algorithm is a Step by Step solution of a specific
mathematical or computer related problem.

® Algorithm design is a specific method to create a
mathematical process in solving problems.

Sorted Array

e Sorted array Is an array where each
element is sorted in numerical,
alphabetical, or some other order, and
placed at equally spaced addresses In
computer memory.

2 3 4
0.2 0.3 1 1.5

Unsorted Array

Unsorted array Is an array where each
element is not sorted in numerical,
alphabetical, or some other order, and
placed at equally spaced addresses In
computer memaory.

0.2 0.3 1.5 1

What Is searching?

* |n computer science, searching Is the process of
finding an item with specified properties from a
collection of items.

* The items may be stored as records in a database,
simple data elements in arrays, text in files, nodes in
trees, vertices and edges in graphs, or maybe be
elements in other search place.

* The definition of a search is the process of looking f
something or someone

* Example : An example of a search is a quest to find ¢
missing person

Why do we need searching?

v'Searching is one of the core computer science
algorithms.

v'"We know that today’s computers store a lot of
iInformation.

v'To retrieve this information proficiently we need
very efficient searching algorithms.

Types of Searching

e Linear search
* Binary search

Linear Search

* The linear search is a sequential search, which uses a loop
to step through an array, starting with the first element.

* |t compares each element with the value being searched
for, and stops when either the value is found or the end of
the array Is encountered.

* |f the value being searched is not in the array, the
algorithm will unsuccessfully search to the end of the
array.

Linear Search

* Since the array elements are stored in linear order
searching the element in the linear order make it easy and
efficient.

* The search may be successful or unsuccessfully. That is, if
the required element is found them the search is
successful other wise it is unsuccessfully.

Unordered linear/ Sequential

search
int unorderedlinearsearch (int A[], int n, int data)

{

for (int I=0; I<n; I1++)

{
If(A[I] == data)
return I
]
return -1;

Advantages of Linear
search

* |f the first number in the directory is the number
you were searching for ,then lucky you!!.

e Since you have found it on the very first page, now
Its not important for you that how many pages are

there in the directory.
* The linear search is simple - It is very easy to
understand and implement

* |t does not require the data Iin the array to be stored
In any particular order

* So It does not depends on no. on elements in the
directory. Hence constant time .

* Your search time is proportional to number of elements in the
directory.

* |t has very poor efficiency because it takes lots of comparisons to
find a particular record in big files

* The performance of the algorithm scales linearly with the size of
the input

* Linear search is slower then other searching algorithms

Analysis of Linear
How IdD@aiel search take?

In the best case, the target value is in the first
element of the array.

So the search takes some tiny, and constant,
amount of time.

In the worst case, the target value is in the last
element of the array.

So the search takes an amount of time
proportional to the length of the array.

Analysis of Linear
In the aéﬁﬂﬁﬂhe target value is somewhere In the arr:

In fact, since the target value can be anywhere in the array, an
element of the array is equally likely.

So on average, the target value will be in the middle of the
array.

So the search takes an amount of time proportional to half the
length of the array

The worst case complexity iIs O(n), sometimes
known an O(n) search

Time taken to search elements keep increasing
as the number of elements are increased.

Binary Search

The general term for a smart search through sorted data is a binar)
search.

1. The initial search region is the whole array.

2. Look at the data value in the middle of the search region.

3. If you've found your target, stop.

4

. If your target is less than the middle data value, the new search
region is the lower half of the data.

5. If your target is greater than the middle data value, the new
search region is the higher half of the data.
6. Continue from Step 2.

20

Binary Search

39| 37

3 4 5 6 717 8

4014530 [31]35 |67

17

Binary Search

2. Calculate middle = (low + high) / 2.

=(0+8)/2=4.
0 1 2 3] 9 6 7 8
20135137140145130 391|556/
1 1 1

middle last

If 37 == array[middle] 0 return middle
Else if 37 < array[middle] [high = middle -1
Else if 37 > array[middle] [low = middle +1

Binary Search

Repeat 2. Calculate middle = (low + high) / 2.

=(0+3)/2=1.
0 1 2 3 4 0 6 7 8
20 | 35 | 37 | 40 PSSRSO
T 1 1
irst middle last

If 37 == array[middle] 0 return middle

Else if 37 < array[middle] 0 high = middle -1
Else if 37 > array[middle] [low = middle +1

Binary Search

Repeat 2. Calculate middle = (low + high) / 2.

=(2+3)/2=2.

0 1 2 3 4 5 6 7 8

20(35]37140(4550 | 515567
11
middle first last

If 37 == array[middle] 0 return middle
Else if 37 < array[middle] 0 high = middle -1
Else if 37 > array[middle] [low = middle +1

Binary Search Routine

public int binarySearch (int[] number, int searchValue)

{

int low = 0, high = number.length - 1, mid = (low + high) / 2;

while (low <= high && number[mid] != searchValue) {
if (number[mid] < searchValue) {
low = mid + 1;
}
else
{ //number[mid] > searchValue
high = mid - 1;

mid = (low + high) / 2; //integer
division will truncate

if (low > high) {
mid =
NOT_FOUND;
;eturn mid;

® Successful
Searchest Case — 1 comparison
— Worst Case —lgg N comparisons

® Unsuccessful

Searchest Case Worst Case —log 2 N
comparisons

® Since the portion of an array to search is cut into
half after every comparison, we compute how many
times the array can be divided into halves.

® After K comparisons, there will be'N/2 elements in
the list. We solve for K when N/2K = 1, deriving K =

log,N.

Performance

Linear — N Binary —

Array Size
10
50

100
500

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

10
50

100
500

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

log,N

Important Differences:

lInput data needs to be sorted in Binary Search and
not in Linear Search

ILinear search does the sequential access whereas
Binary search access data randomly.

ITime complexity of linear search -O(n) , Binary
search has time complexity O(log n).

ILinear search performs equality comparisons and
Binary search performs ordering comparisons

BUBBLE SORT ALGORITHM

» Bubble sort is a simple sorting algorithm.

» This sorting algorithm is comparison-based algorithm in which
each pair of adjacent elements is compared and the elements
are swapped if they are not in order.

» This algorithm is not suitable for large data sets as its average
and worst case complexity are of O(n2) where n is the numbel
of items.

How Bubble Sort Works?

» We take an unsorted array for our example. Bubble sort takes
O(n2) time so we're keeping it short and precise.

14 33 27 35 10

» Bubble sort starts with very first two elements, comparing
them to check which one is greater.

20000

In this case, value 33 is greater than 14, so it is already in sorted locations.

Next, we compare 33 with 27.

D0E00

We find that 27 is smaller than 33 and these two values must be swapped.

14][33][27 [as}[w
The new array should look like this —

2000

Next we compare 33 and 35. We find that both are in already sorted

D000

positions.

Then we move to the next two values, 35 and 10.

3 E2E3 /5

We know then that 10 is smaller 35. Hence they are not sorted.

(o2)L

We swap these values. We find that we have reached the end of the array.
After one iteration, the array should look like this —

.

D00

To be precise, we are now showing how an array should look like after each
iteration. After the second iteration, it should look like this —

S E3E) |

Notice that after each iteration, at least one value moves at the end.

e o

L

And when there's no swap required, bubble sorts learns that an array is

[0]{14] 22){o0 J{ =

L

completely sorted.

Now we should look into some practical aspects of bubble sort.

Algorithm

We assume list is an array of n elements. We further assume that swap
function swaps the values of the given array elements.

begin BubbleSort(list)

for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if
end for

return list

end BubbleSort

Implementation in C

#include <stdio.h>
#include <stdbool.h>

#define MAX 1@

int list[MAX] = {1,8,4,6,0,3,5,2,7,9};

void display() {
int i
printf("[");
// navigate through all items

for(i = @; i < MAX; i++) {
printf("%d ",1list[i]);

1
printf("]\n");
1
void bubbleSort() {
int temp;
ot 3.);

bool swapped = false;

// loop through all numbers
for(i = ©8; i < MAX-1; i++) {
swapped = false;

Try it

// loop through numbers falling ahead
for(j = ©; j < MAX-1-i; j++) {
printf(” Items compared: [%d, %d | ", list[j],list[j+1]);

// check if next number is lesser than current no
T swap the numbers.
// (Bubble up the highest number)

if(list[j] > 1list[j+1]) {
temp = list[j];
list[j] = list[j+1];
list[j+1] = temp;

swapped = true;

printf(” => swapped [%d, %d]\n",list[j],1list[j+1]);
telse {

printf("” => not swapped\n”);
}

}

// if no number was swapped that means
Lf array is sorted now, break the loop.
if(!swapped) {

break;
¥

printf("Iteration %d#: ",(i+l));
display();

main() {
printf("Input Array: ");
display();
printf("\n");

bubbleSort();

printf("\nOutput Array: ");
display();

If we compile and run the above program, it will produce the following result

Output

Input Array: [1 84 6 @ 352 7 9]

Items compared: [1, 8] => not swapped

Items compared: [8, 4] => swapped [4, 8]
Items compared: [8, 6] => swapped [6, 8]
Items compared: [8, @] => swapped [@, 8]
Items compared: [8, 32] => swapped [3, 8]
Items compared: [8, 5] => swapped [5, 8]
Items compared: [8, 2] => swapped [2, 8]
Items compared: [8, 7] => swapped [7, 8]
Items compared: [8, 9] => not swapped

Iteration 1#:

Items
Items
Items
Items
Items
Items
Items

Items

Iteration 2#:

Items
Items
Items
Items
Items
Items

Items

Iteration 3#:

Items
Items
Items
Items
Items

Items

[1 46
compared:
compared:
compared:
compared:
compared:
compared:
compared:
compared:
[1 468
compared:
compared:
compared:
compared:
compared:
compared:
compared:
[1 8 3
compared:
compared:
compared:
compared:
compared:

compared:

e 3527869]

i B e B e D e B e O s L - T e B e T e T e T T e I e LY © I e T e TR e TR e TR e IR e T e DO |
Vi B B W R BN O 0NN fs B AL I« T « T o N

-

1,
4,

~

-

‘e

L]

L]

L

-

U

-

-

-

-

-

]

L]

-

-

0~ N WO O b

N NN W ® R
T T R P R A

O VN A W O
bl bl b e bl

]
]
]
]
]
]
]
]

=>
=>
=>
=>
=>
=>
=>

=>

not swapped
not swapped
swapped [©,
swapped [3,
swapped [5,
swapped [2,
not swapped

not swapped

8 9]

=>

=>

not swapped
swapped [@,
swapped [3,
not swapped
swapped [2,
not swapped

not swapped

8 9]

=>
=>
=>
=>
=>

=>

swapped [0,
not swapped
not swapped
swapped [2,
not swapped

not swapped

6]
6]
6]
6]

4]
4]

5]

1]

4]

Items
Items
Items
Items

Items

Items
Items

Items

Items

compared: [@, 1]

compared
compared
compared

compared

compared
compared
compared

compared

' [1
=
B [
[4,

: [@,
I |
¢ | 2
: [3,

=2

3] =
2] =
4] =
5] =

1] =%
2] =
3] =
4] =

Iteration 4#: [0 1324567 89]

not swapped
not swapped
swapped [2,
not swapped

not swapped

Iteration 5#: (0123456789]

not swapped
not swapped
not swapped

not swapped

Output Array: [61 23456789]

3]

Insertion Sort

This is an in-place comparison-based sorting algorithm. Here, a sub-list is
maintained which is always sorted. For example, the lower part of an array is
maintained to be sorted. An element which is to be 'insert'ed in this sorted
sub-list, has to find its appropriate place and then it has to be inserted there.
Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and
inserted into the sorted sub-list (in the same array). This algorithm is not
suitable for large data sets as its average and worst case complexity are of
0O(n2), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

"_ 14 \33‘ 27 ‘ 10 ‘ 35“ 19 ‘ a2 |[44 |

Insertion sort compares the first two elements.

‘14|33‘27H10’35 19”42“44

It finds that both 14 and 33 are already in ascending order. For now, 14 is in
sorted sub-list.

W=) = o)][10](=] «]

Insertion sort moves ahead and compares 33 with 27.

8=) = o (==)0)2) (4]

And finds that 33 is not in the correct position.

(14 (3|27 10| a5 [19 | a2 || 44 |

It swaps 33 with 27. It also checks with all the elements of sorted sub-list.
Here we see that the sorted sub-list has only one element 14, and 27 is
greater than 14. Hence, the sorted sub-list remains sorted after swapping.

_| Q00000

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with
10.

"

(4o (o) = (] ve)2]«

We swap them again. By the end of third iteration, we have a sorted sub-list

o) 08 (e = (== [vo) =)«

This process goes on until all the unsorted values are covered in a sorted sub-

of 4 items.

list. Now we shall see some programming aspects of insertion sort.

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can
derive simple steps by which we can achieve insertion sort.

Step 1
Step 2

If it is the first element, it is already sorted. return 1;

Pick next element
Step 3 - Compare with all elements in the sorted sub-list
Step 4 - Shift all the elements in the sorted sub-list that is greater than the

value to be sorted

Step 5 Insert the value

Step 6

Repeat until list is sorted

Selection Sort

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-
place comparison-based algorithm in which the list is divided into two parts,
the sorted part at the left end and the unsorted part at the right end.
Initially, the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with
the leftmost element, and that element becomes a part of the sorted array.
This process continues moving unsorted array boundary by one element to
the right.

This algorithm is not suitable for large data sets as its average and worst case
complexities are of O(n<), where n is the number of items.

How Selection Sort Works?

Consider the following depicted array as an example.

14 33 27‘ 10‘:35H 19”'42."44

For the first position in the sorted list, the whole list is scanned sequentially.
The first position where 14 is stored presently, we search the whole list and
find that 10 is the lowest value.

(14)(= J o)08 2) 0)] (]

So we replace 14 with 10. After one iteration 10, which happens to be the
minimum value in the list, appears in the first position of the sorted list.

o)== (2)(«]

For the second position, where 33 is residing, we start scanning the rest of

Fs

LY

14|35 | 19

the list in a linear manner.

(10|38 | 27 | 1 |[a5 |[19 |[42 | 4 |

g N

We find that 14 is the second lowest value in the list and it should appear at
the second place. We swap these values.

08 =) =)G ==) o L2)]

After two iterations, two least values are positioned at the beginning in a

sorted manner.

(8] = (==) o0) [) o=) =]

The same process is applied to the rest of the items in the arrav.

Fellowing is a pictorial depiction of the entire sorting process —

,;' == = S ~ - ~ ™ ‘; i
10 14 27 33 35 19 a2 e
— A A A& T A A I 2)
(= = — W —— = = - N — 7 -~
10 || 14 || 27 a3 as 19 42 a4
L'_ = _i_L‘ '4_L 2 5 o 5 — < - N s F,
- - N =7 S ST =
10 14 19 33 3as 27 42 a4
- - - s & i 2 s AR 2)
™ . " > — - ~ 0 N
|
10 14 19 33 3s 27 42 a4
e e " s . — A ’

- = —r == S e N
10] 14 | 19] 27 || a5 || 33 || 42 || a4
10 |14 |[19 || 22 |[35 || 33 || 42 || 44 |

e
10 || 14 || 19 l 27 || as || 33 || a2 || 4a

= ~ 7 Y, - S = S
10 || 14 | 19] 27 || a3 || 35 || a2 || a4

k£ = £} M . AN 5
|10 || 14 || 19 || 27 || 33 || 35 || 42 [aq

Algorithm

Step 1 - Set MIN to location @

Step 2 - Ssarch the mdnisum element in the list
Step 3 - Swap with value at location MIN
Step 4 - Increment MIN to point o next element
Step S - Repest until 12 is sorted
Pseudocode
procedure selection sort

list : array of items

n : size of list

for i =1 ton - 1

/= set current element as minimum*/
min = i

/* check the element tc be minimum */

for 3 = i+#1 to n
if 1list[j] < list[min] then
min = Jj;
end if
end for

/= swap the minimum element with the current element*s

if indexmin != i then
swap list[min] and 1list[i]
end if
end for

end procedure

Merge Sort Algorithm

* Merge sort Is a sorting technique based on
divide and conquer technique. With Average
case and worst-case time complexity being
O(n log n), 1t Is one of the most respected
algorithms.

* Merge sort first divides the array into equal
halves and then combines them in a sorted
manner.

How merge sort works

* To understand merge sort, we take an
unsorted array as depicted below -

14 ; 33 H 27 || 10 j 35 W 19 || 42 w 44 ‘

* We know that merge sort first divides the
whole array iteratively into equal halves
unless the atomic values are achieved. We se
here that an array of 8 items is divided Into
two arrays of size 4.

14]38 27 10 a6 | 19][2] aa

* This does not change the sequence of
appearance of items in the original. Now we
divide these two arrays into halves.

14|'33 27 ||l 10| || a5 || 19 || || 42 || 44

* We further divide these arrays and we achiev
atomic value which can no more be divided.

(1a]l s (2] [10] [o8]

o] [[«

* Now, we combine them in exactly same
manner they were broken down.

* We first compare the element for each list anc
then combine them into another list in sorted
manner. We see that 14 and 33 are in sorted
positions. We compare 27 and 10 and in the
target list of 2 values we put 10 first, followed
by 27. We change the order 19 and 35. 42 an
44 are placed sequentially.

| 14 | | 33 ‘ | 10 | ‘ 27 | | 19 ‘ ‘ 35 \ | 42 ‘ | 44 |

* |n next iteration of combining phase, we
compare lists of two data values, and merge
them into a list of four data values placing all
In sorted order.

‘10?}14.33‘27: 10 || 25 || 42 |[44

* After final merging, the list should look like
this —
|

10 || 14 || 19 || 27 || 33 || 35 || 42 || 44

Algorithm

* Merge sort keeps on dividing the list into equal
halves until it can no more be divided. By
definition, if it Is only one element in the list, it
IS sorted. Then merge sort combines smaller

sorted lists keeping the new list sorted too.
- Step 1 - divide the list recursively into two halves

until it can no more be divided.

- Step 2 - if it Is only one element in the list it Is
already sorted, return.

- Step 3 — merge the smaller lists into new list In
sorted order.

Data Structure - Shell

. She?sgrltﬁtls a highly efficient sorting algorithm
and is based on insertion sort algorithm. This
algorithm avoids large shifts as in case of
Insertion sort if smaller value is very far right and
have to move to far left.

* This algorithm uses insertion sort on widely
spread elements first to sort them and then sorts
the less widely spaced elements. This spacing is
termed as interval. This interval is calculated
based on Knuth's formula as —

e h=h*3+1
where — h Is interval with initial value 1

This algorithm is quite efficient for medium
Sized data sets as Its average and worst case
complexity are of O(n”2) where n are no. of
items.

How shell sort works

* \We take the below example to have an idea, howv
shell sort works?

* \We take the same array we have used in our
previous examples. {35,33,42,10,14,19,27,44}

* For our example and ease of understanding we
take the interval of 4.

e And make a virtual sublist of all values located at
the interval of 4 positions. Here these values are
{35, 14}, {33, 19}, {42, 27} and {10, 14}

(o5 |[s |[42 |[[10][14 |[19 |[27 |[=2 |

| 3s | 14

=2 | 1o

‘42’ ’27J

&3 22]

We compare values in each sub-list and swap them (if necessary) in th
original array. After this step, new array should look like this —

14 |19 || 27 || 10 || 35 || 33 || 42 || 44 |

Then we take interval of 2 and this gap generates two sublists - {14, 27,
35,
42}, {19, 10, 33, 44}

14 \ 19 } 27

!19 ‘ 10 | "33} a4

We compare and swap the values, if required, in the original array. After 1
step, this array should look like this —

‘ 14 19 || 27 || 10 ‘ 35 || 33 J a2 || a4
J ! ’) ! !) L S

And finally, we sort the rest of the array using interval of value 1.
Shell

sort uses insertion sort to sort the array. The step by step depiction is
shown below —

A |

A\

. il = "ol . - =, -~ N -
14 19 27 10 35 33 a2

= _—— e i —Se e el —— =

- T B ~ - L = T e o T =N = -
143 19 27 10 35 33 a2

L - — I~ Y - — ? — - — —— S o — —

-~ ——— — ——— ~ —— — ~— —~
14 19 =27 10 35 33 a2

— I D— e— - o it o it -

- - — ™~ - o T i ~— . W o = W o —
14 19 27 10 35 33 a2

., — . - - - . — - i — - — - — i

= — —_ T T ~ - -
14 19 10 =27 35 33 a2

— o - - — - — - - - - - - - — =

o = N = W ~ - - = W - = W ~—
142 10 19 — 35 33 a2

— — S = —~— — - — N o N = g == = -

; _‘_ . _"ﬂ_ _'-' — "_ _F'_-_— __:_‘_; ——— "__'_ "‘|_ ’__ _"_ F _-; 3
10 143 19 27 35 33 a2

. i - o — = e o — o e - - > — -

- g e ™ - o W — W — o e
10 14 19 27 35 33 a2

~ — e o = - - N - - o N -

- “— -r- B e oy, -~ — o N - - ~
10 14 19 27 33 35 a2

e P —_— == e . - — e e —

~ . . " -~ = W —— . = N < .
10 14 19 27 33 35 a2

" = O O S > B v &= s

Algorithm

* We shall now see the algorithm for shell sort.
e Step 1 - Initialize the value of h

e Step 2 — Divide the list into smaller sub-list of
equal interval h

* Step 3 — Sort these sub-lists using insertion
sort

e Step 4 — Repeat until complete list Is sorted

Radix Sort

* Radix Sort is generalization of Bucket Sort

e To sort Decimal Numbers radix/base will be
used as 10. so we need 10 buckets.

e Buckets are numbered as 0,1,2,3,...,9
e Sorting Is Done In the passes

* Number of Passes required for sorting Is
number of digits in the largest number In the
list.

EX.

Range Passes

O to 99 2 Passes
0 to 999 3 Passes
0 to 9999 4 Passes

e |n First Pass number sorted based on Least
Significant Digit and number will be kept in same

bucket.
 |n 2nd Pass, Numbers are sorted on second leas

significant bit and process continues.

* At the end of every pass, numbers In buckets are
merged to produce common list.

Consider the following 9 numbers:
493 812 715 710 195 437 582 340 385

We should start sorting by comparing and ordering the one's digits:

340 710

812 582
493

715195 385

437

W o 1O BN = O

Notice that the numbers were added onto the list in the order that they were found, which is why the
numbers appear to be unsorted in each of the sublists above. Now, we gather the sublists (in order from
the 0 sublist to the 9 sublist) into the main list again:

340 710 812 582 493 715 195 385 437

Now, the sublists are created again, this time based on the ten's digit:

710 812 715

437
340

582 385
493 195

mmwmmawMHoE

Now the sublists are gathered in order from 0 to 9:
710 812 715 437 340 582 385 493 195

Finally, the sublists are created according to the hundred's digit:

Digit| _Sublist |

0

2195

2

3 340 385
4 437 493
5 582

6

7 710715
8 812

9

At last, the list is gathered up again:
195 340 385 437 493 582 710 715 812

* Radix Sort is very simple, and a computer can do it fast. When it is
programmed properly, Radix Sort is in fact one of the fastest

sortm gorlthrgs for numbers or strj ngs of Iet e S.
Avera se and Worst case CompleXity -

Disadvantages

e Still, there are some tradeoffs for Radix Sort that can make it less
preferable than other sorts.

* The speed of Radix Sort largely depends on the inner basic
operations, and if the operations are not efficient enough, Radix
Sort can be slower than some other algorithms such as Quick ¢
and Merge Sort.

* In the example above, the numbers were all of equal length, but
many times, this is not the case. If the numbers are not of the same
length, then a test is needed to check for additional digits that neecd
SOl‘tIn%ﬂ){hIS ang be one of the slowest arts of Radix Sort, and it Is

& AN RISPHRKRERE BRLsRPac than other sorting’

Tg;orlthms since In addition to the array that will be sorted, you
need to have a sublist for each of the possible digits or letters.

Merge Sort

* The next sorting algorithm is one which is
defined recursively

* Suppose we:
— divide an unsorted list into two sub-lists,
— sort each sub list

* How quickly can we recombine the two
sub-lists into a single sorted list?

Example

* Consider the two sorted arrays and an
empty array

* Define three indices at the start of each
array 7 112|18|24] » » «

S |16]121|33] »

—P N | W

Example

* Wecompare2and 3: 2<3
* Copy 2 down
* Increment the corresponding indices

S |18|21|24) » =«

3
T

2|7 |12116|33| ¢~

,—/'T
2

Example

* We compare 3 and 7
* Copy 3 down
* Increment the corresponding indices

3

/2

213

18|21|24] ¢+

12|16|33| * =

—» ~1 || O

Example

* We compare 5 and 7
* Copy 5 down
* Increment the appropriate indices

315|18|21|24) + = -

[1

Al 7 [12]16]33] « »

»
2135

Example

* We compare 18 and 7
* Copy 7 down
* Increment...

12|16|33| * =

~N 1~
—>|

Example

* We compare 18 and 12
* Copy 12 down
* Increment...

Example

* We compare 18 and 16
* Copy 16 down
* Increment...

Example

* We compare 18 and 33
* Copy 18 down
* Increment...

315|18|21|24) + = -

~

2|7 |12116{33| ¢~
T

213|5|7|12|16]18

Example

* We compare 21 and 33
* Copy 21 down
* Increment...

Example

* We compare 24 and 33
* Copy 24 down
* Increment...

3[5]18[2124] - - -

=K

2| 7112|1633 «\ «
| 1

ABBHEREERERE

Example

* We would continue until we have passed
beyond the limit of one of the two arrays

* After this, we simply
copy over all remaining
entries in the non-
empty array

1]3]7]9[1415]21]
2 [10]12]19]23]25[28]

T
1]12]3|7]9]10[12[14]15]19[21

T

113]7[9]14]15[21
2 [10]12]19|23|25|28

T
1]12] 3| 7]9]10[12]14]15[19]21]|23| 25|28

Merging Two Lists

* Programming a merge is straight-forward:

—the sorted arrays, arrayl and array2, are
of size n1 and n2, respectively, and

—we have an empty array, arrayout, of size
nl + n2

* Define three variables

int inl = 0, in2 = 0, out = 0;

which index into these three arrays

Merging Two Lists

* We can then run the following loop:

#include <cassert>

//...

int inl = 0, in2 = 0, out = 0;

while (inl < nl && in2 < n2) {
if (arrayl[inl] < array2[in2]) {

arrayout[out] = arrayl[inl];
++inl;
} else {
assert(arrayl[inl] >= array2[in2]);
arrayout[out] = array2[in2];
++in2;

}
++out;

Merging Two Lists

* We're not finished yet, we have to empty
out the remaining array

for (/* empty */ ; inl < nl; ++inl, ++out) ({

arrayout[out]

arrayl[inl];

}

for (/* empty */ ; in2 < n2; ++in2, ++out) {
arrayout[out]

array2[in2];

}

Run-time Analysis of Merging

Assume that the sum of the length of both

lists being merged is n

The statement ++out will only be run at
most n times

Therefore, the body of the loops run
exactly n times

Hence, merging may be performed in
time

(n)

Merge Sort

* Question:

— we split the list into two sub-lists and sorted
them

— how should we sort those lists?

* Answer (theoretical):

— if the size of these sub-lists is > 1, use merge
sort again

— if the sub-lists are of length 1, do nothing: a
list of length one is sorted

Merge Sort

* However, just because an algorithm has
excellent asymptotic properties, this does
not mean that it is practical at all levels

* Answer (practical):

— If the sub-lists are less than some threshold
length, use an algorithm like insertion sort to
sort the lists

— Otherwise, use merge sort, again

Merge Sort

* Thus, a graphical interpretation of merge
sort would be

Merge Sort

e Some details:

—if the list size is odd, just split the array into

two almost equally sized list — one even, one
odd

— each merging requires an additional array

* we can minimize the amount of memory required
by using two arrays, splitting and sorting in one,
then merging the results between the two arrays

Merge Sort

* Merge sort using two arrays

Array 1 Array 2

split
s

PANRANCVANAN

AN AN AN AT AN AN ANA

Merge

Example

* Consider the following is of unsorted
numbers

137749356148 32395738937579994 2815557 518897 62

* Sorting these using merge sort is relatively
straight-forward, as the next slide shows

Example

* Applying the merge sort algorithm:

13|77|49|35]61|48| 3 |23|95|73|89|37|57|99|94|28|15|55| 7 [51|88|97|62
split
13|77|49|35|61]48| 3 |23|95|73|89|37 57 99|94 28|15|55| 7 |51|88|97
split
13|77]49|35|61|48 3 |23|95|73 89|37 57 99|94 28|15|55 7151|88
/\ /N st/ \ /
13|77|49] |35|61|48 3123|95] |73|89|37| |57 99|94 28|15|55 715188
< . sort listslof length 3 g less i

y A
13 49I77 35]48|61 3123|95] |[37]73 89I 57|94|99] |15]28]|55 7151188

merge

13]35]48|49|61|77 3 |23|37|73 89I95 15]28|55|57]94]99 7151162

‘___/ merge ‘___/

3 |13]23]35|37|48 49I61 73|77|89]95 7 15|28 51|55|57]62]|88|94|97

——
merge

3| 7 |13]15]23|28|35]|37]|48]49]51|55|57|61|62| 73| 77|88 89|94 9597|199

F 3

Run-time Analysis of Merge Sort

* Thus, the time required to sort an array of
size n>1Is:
— the time required to sort the first half,
— the time required to sort the second half, and
— the time required to merge the two lists

* Thatis:

o(1) no1

Tm) 2TW O n 1

Run-time Analysis of Merge Sort

* We have solved this type of problem
before: assume n = 2ffor some k>0

* Therefore, we have:

T(n) T(2%)
k

2T 2-_ 2k
2

2T 2/{ 1“ ok

Run-time Analysis of Merge Sort

* Repeating this, we have:

T(n) 2T2' 2
21{1 .
22T — ok b ok

22T2k" 2“ 2k. Nk
22T2k 2“ 7 ok

Run-time Analysis of Merge Sort

* A third time, we get:
T(n) 2°T2F' 2 2
2k 2

22 2T — k1 ok

2k 3 2k 2 2k
@T 2"@ @2"

* Thus we note a pattern...

Run-time Analysis of Merge Sort

* Noting the pattern, we assume that if we
repeat this process k& times, we get:

T(n) 2T28% k 2F
2812 k2
2T 1, k 2F
21 k 2F

Run-time Analysis of Merge Sort

* Recall that by assumption, » = 2%, and
therefore k= log,(n)

* Therefore

T(n) @2" Kk 2%
O(n log,(n)n)
O(nIn(n))

Summary

* Thus, merge sort:

— divides an unsorted list into two equal or
nearly equal sub lists,

— sorts each of the sub lists by calling itself
recursively, and then

— merges the two sub lists together to form a
sorted list

Run-time Summary

* The following table summarizes the run-
times of merge sort

Case |RunTime Comments
Worst (n |No worst case
In(n))
Average (n

Best (n |No best case

Comments

* In practice, merge sort is faster than heap
sort, though they both have the same
asymptotic run times

* Merge sort requires an additional array,
something which heap sort does not
require

* Quick sort falls in between w.r.t. time but
does not require O(n) additional memory

Merge Sort

* The (likely) first implementation of merge
sort was on the ENIAC in 1945 by John
von Neumann

— the creator of the von Neumann
architecture used by all modern

Arithmetic
Logic
Unit http://en.wikipedia.org/wiki/Von_Neumann

Waterloo
- Usage Notes

* These slides are made publicly available on the web for
anyone to use

* If you choose to use them, or a part thereof, for a course
at another institution, | ask only three things:
— that you inform me that you are using the slides,
— that you acknowledge my work, and

— that you alert me of any mistakes which | made or changes
which you make, and allow me the option of incorporating such
changes (with an acknowledgment) in my set of slides

Sincerely,
Douglas Wilhelm Harder, MMath
dwharder@alumni.uwaterloo.ca

Divide: Partition the array into two sub-arrays
Alp..qg-1] and A[g*+1 .. r] such that each element of

Alp .. g-1]1s less than or equal to A[q], which 1n turn

less than or equal to each element of A[q+1 .. 1]

Conquer: Sort the two sub-arrays A[p .. q-1] and

A[g+1 .. r] by recursive calls to quick sort.

Combine: Since the sub-arrays are sorted in place, no

work 1s needed to combine them.

QUICKSORT(A, p, 1)
if p<r
then @ € PARTITION(A, p, r)
QUICKSORT(A, p, g-1)

QUICKSORT(A, q+1, r)

PARTITION(A, p, 1)
X € Alr]

1€ p-1

forj € ptor-1
do if A[j] <=x
then 1 €i1+1
exchange A[i] € =2 A[j]
exchange A[i+1] € =2 A[r]

return 1+1

P, |

(d)

©

-

(f)

-

Quick Sort

;|| |:

(9)

-

Quick Sort

i r

;||

(h)

-

Quick Sort

Worst-case partitioning:

The partitioning routine produces one sub-problem
with n-1 elements and another sub-problem with 0

elements. So the partitioning costs 6(n) time.

Worst-case partitioning:
The recurrence for the running time
T(n)=T(n-1) + T(0) + 6(n)
=T(n-1) + 6(n)

S —— 0(n?)

Worst-case partitioning:

The O(n?) running time occurs when the input
array 1s already completely sorted — a common

situation 1n which 1nsertion sort runs in O(n) time

Best-case partitioning:

The partitioning procedure produces two

sub-problems, each of size not more than n/

2.

Best-case partitioning;:
The recurrence for the running time
T(n) <=2T(n/2) + 6(n)

= - O(n 1g n)

Best-case partitioning:
The equal balancing of the two sides of the

partition at every level of the recursion

produces faster algorithm.

Balanced partitioning:

Suppose, the partitioning algorithm always
produces 9-to-1 proportional split, which

seems quite unbalanced.

Balanced partitioning:
The recurrence for the running time
T(n) <=TOn/10) + T(n/10) +cn

o O(n 1g n)

Balanced partitioning: The recursion tree

7 U I PORNIN T T oM
A A / \\\
% rn Ig—(} M I S LI LI L LI I Y TPy | T Fi 2
N

// ™ .«/ \\
10815 1 | Y 4 % :
106 ™ 100 7 06 7 10a 7 " on

VAN /N 7N /

. K /

108 10/9 7 / 81 729 |
Vol o067 1000 ! weon
/N o/
varanfin- “_-__'; i F!
N

-l 2 CH

O(nlgr)

Balanced partitioning:

In fact, a 99-to-1 split yields an O(n Ig n) running
time. Any split of constant proportionality yields a

recursion tree of depth 0(1g n)

Intuition for the average case:

It 1s unlikely that the partitioning always happens

in the same way at every level.

Intuition for the average case:

In the average case, PARTION produces a mix of

“000d” and “bad” splits.

Intuition for the average case:

The combination of the bad split followed by the good split
produces three arrays of sizes 0, (n-1)/2-1, and (n-1)/2 at a

combined partitioning cost of O(n) + 0(n-1)= 0(n)

(n-1)/2-1 (n-1)/2

Intuition for the average case:

A single level of partitioning produces two sub-arrays of size

(n-1)/2 at a cost of O(n).

Instead of always using A[r] as the pivot, we will

use a randomly chosen element from the sub-array

Alp..r].

Because the pivot element 1s randomly chosen,
we expect the split of the input array to be

reasonably well balanced on average.

RANDOMIZED-PARTITION(A, p, 1)
i € RANDOM(p, r)
exchange A[r] € =2 AJi]

return PARTITION(A, p, 1)

RANDOMIZED-QUICKSORT(A, p, 1)

if p<r then
q € RANDOMIZED-PARTITION(A, p, 1)
RANDOMIZED-QUICKSORT(A, p, g-1)

RANDOMIZED-QUICKSORT(A, q+1, 1)

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33
	页 34
	页 35
	页 36
	页 37
	页 38
	页 39
	页 40
	页 41
	页 42
	页 43
	页 44
	页 45
	页 46
	页 47
	页 48
	页 49
	页 50
	页 51
	页 52
	页 53
	页 54
	页 55
	页 56
	页 57
	Merge Sort
	Example
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	Merging Two Lists
	页 14
	页 15
	Run-time Analysis of Merging
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	Run-time Analysis of Merge Sort
	页 25
	页 26
	页 27
	页 28
	页 29
	Summary
	Run-time Summary
	Comments
	页 33
	Usage Notes
	Quick Sort
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	A Randomized Version of Quick Sort
	Slide 31
	Slide 32
	Slide 33

